Problem: Here we have to find integration for the (1/1+x*x)dx with lower limit =0 to upper limit = 6
Algorithm:
Step 1: input a,b,number of interval n
Step 2:h=(b-a)/n
Step 3:sum=f(a)+f(b)+4*f(a+h)
Step 4:sum=sum+4*f(a+i*h)+2*f(a+(i-1)*h)
Step 5:Display output=sum * h/3
Code:
#include<stdio.h>
float y(float x){
return 1/(1+x*x);
}
int main(){
float a,b,h,sum;
int i,n;
printf("Enter a=x0(lower limit), b=xn(upper limit), number of subintervals: ");
scanf("%f%f%d",&a,&b,&n);
h = (b - a)/n;
sum = y(a)+y(b)+4*y(a+h);
for(i = 3; i<=n-1; i=i+2){
sum=sum+4*y(a+i*h) + 2*y(a+(i-1)*h);
}
printf("\n Value of integral is %f\n",(h/3)*sum);
return 0;
}
Output:
