Problem: Here we have to find integration for the (1/1+x*x)dx with lower limit =0 to upper limit = 6
Algorithm:
Step 1: input a,b,number of interval n
Step 2:h=(b-a)/n
Step 3:sum=f(a)+f(b)
Step 4:If n is odd
Then , sum=sum+2*y(a+i*h)
Step 5: else, When n I s even
Then, Sum = sum+3*y(a+i*h)
Step 6:Display output=sum *3* h/8
Code:
#include<stdio.h> float y(float x){ return 1/(1+x*x); //function of which integration is to be calculated } int main(){ float a,b,h,sum; int i,n,j; sum=0; printf("Enter a=x0(lower limit), b=xn(upper limit), number of subintervals: "); scanf("%f%f%d",&a,&b,&n); h = (b-a)/n; sum = y(a)+y(b); for(i=1;i<n;i++) { if(i%3==0){ sum=sum+2*y(a+i*h); } else{ sum=sum+3*y(a+i*h); } } printf("Value of integral is %f\n", (3*h/8)*sum); }
Output: