Steps:
If we want to sort in ascending then we create a min heap
If we want to create in descending then we create in max heap
Once the heap is created we delete the root node from heap and put the last node in the root position and repeat the steps till we have covered all the elements.
For ascending order:
1. Build Heap
2. Transform the heap into min heap
3. Delete the root node
pseudocode:
Heapsort(A as array) BuildHeap(A) for i = n to 1 swap(A[1], A[i]) n = n - 1 Heapify(A, 1) BuildHeap(A as array) n = elements_in(A) for i = floor(n/2) to 1 Heapify(A,i,n) Heapify(A as array, i as int, n as int) left = 2i right = 2i+1 if (left <= n) and (A[left] > A[i]) max = left else max = i if (right<=n) and (A[right] > A[max]) max = right if (max != i) swap(A[i], A[max]) Heapify(A, max)
source:
http://www.algorithmist.com/index.php/Heap_sort
Implemented code:
//this is descending order max-heapify #include<bits/stdc++.h> using namespace std; //swapping numbers using call by reference int swaps(int *p,int *q) { int temp=*q; *q=*p; *p=temp; } //this max heapify ensure that child node is always smaller than the parent node MaxHeapify(int ary[],int n,int i){ int largest=i; int left=2*i+1; int right=2*i+2; if(left<n && ary[left]>ary[largest]) { largest=left; } if(right<n && ary[right]>ary[largest]) { largest=right; } if(largest!=i) { swaps(&ary[i],&ary[largest]); MaxHeapify(ary,n,largest); } } //building heap void BuildHeap(int ary[],int n) { int i; for(i=floor(n/2)-1;i>=0;i--){ MaxHeapify(ary,n,i); } } //heapSort function sorting the array void heapSort(int ary[],int n) { BuildHeap(ary,n); for(int i=n-1;i>0;i--){ swaps(&ary[0],&ary[i]); int heap_size=i; MaxHeapify(ary,heap_size,0); } } //utility function void printAry(int ary[],int n) { for(int i=0;i<n;i++) { cout<<ary[i]<<" "; } } //driver program int main(){ int ary[]={40,60,10,20,50,30}; int n=sizeof(ary)/sizeof(ary[0]); heapSort(ary,n); cout<<"Sorted array:"; printAry(ary,n); }
output:
Sorted array:10 20 30 40 50 60
Took help from these two links:
http://www.codingeek.com/algorithms/heap-sort-algorithm-explanation-and-implementation/
http://www.geeksforgeeks.org/heap-sort/
Complexity Analysis:
Time Complexity for MaxHeapify: O(logn)
Complexity for BuildHeap: O(n)
Complexity of heapSort:
Worst, Avergae, Base case: O(n*logn)
It is inplace algorithm.
Space Complexity: O(1)